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SUMMARY

The general wave equation is derived governing the propagstion of
sound in & stratified moving medium, the velocity of which varies only
along one coordinste. Under the assumption that the flow velocity is
small and slowly varying, a simplified equatlon 1s adopted which is sat-
isfactory for the present spplication. A solution 1s found to this equa-
tion corresponding to the pressure fleld around a spherical source located
above & plane ground in a horizontal wind whose veloclty increases with
eltitude. It 1s shown that within the acoustlc shadow that forms on the
upwind side of such a source the pressure fleld 1s similar to that which
is obtained in the corresponding problem of a sound source in a tempera-
ture gradient. An expression is derived for the rate of attenuation
within a shadow which is brought about by the presence of both a wind and
a tempersture gradient.

INTRODUCTION

An important phenomenon assoclated with the propsgetion of sound in
the atmosphere is that of the refraction of the acoustic rays which can
be brought about not only by the presence of & temperature gradient but
also by the presence of a wind with a gradient in speed. A uniform wind
will have little effect on the sound propagation since its speed will, in
general, be much smaller than that of sound. However, the presence of g
wind gradient leads to an effective variastion in the speed of sound at
different points, and this causes a refraction of the rays, just as in
the case of a temperature gradient. The important difference between the
two phenomena lies in the fact that in a temperature gradient the local
speed of sound is determined by the temperature at that point, whereas in
the wind case the effective sound speed depends on the direction ss well
as on the magnitude of the wind velocity. This means that, assuming the.
gradient in each case to lie always in the same direction, call it the
vertical, the sound field around a sphericsl source in a temperature
gradient will be symmetricel sbout that vertical which passes through the
source; in other words, 1t will depend on only two coordinstes. In the
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wind case, however, this symmetry clearly no longer exists, and the field
will necessarily depend on three coordinates.

This phenomenon leads to an interesting type of shadow formation in
the wind cese. If a spherical source is situsted asbove ground in a hori-
zontal wind whose velocity increases uniformly with height, then a shadow
reglon into which no acoustic rays penetrate will form on the upwind side
of the source but not on the downwind side. In fact, the distance to the
shadow will be a minimum directly into the wind and will increase %o
infinity at right angles to it. This situation is illustrated in fig-
ure 1. 1In the presence of a negative temperature gradient alone, the
shadow distence is, of course, the same in 8ll directions.

A consideration of these facts suggested the tentative assumption
which was mede in a previous report (ref. 1) on the sound field in a wing-
created shadow. There it was assumed that ean expression for the dif-
fracted fleld within the wind-created shadow could be obtained fram the
corresponding expression for the temperature-created shadow by replacing
the sonic veloclty gradient by the wind velocity gradient times the cosine
of the angle between the sound and wind directions. The results of the
present study furnish the Justification for this assumption.

This investigation was conducted at the Massachusetts Institute of
Technology Acoustics Laboratory under the sponsorship end with the finan-
clal assistence of the National Advisory Committee for Aeronsutics.

SYMBOLS
Ay constent in H_, /5(1)(Ane"i“_) =0
a defined in equation (11)
Cy,Co - contours
c sonic speed
D solution to equations (5) or (18) which represents down-
going wave
Eég)(x) Hankel function of second kind of order n
h gource height

T imeginary
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To(x)

X,¥,2

Xl,XQ,XB}

Tl

zero-order Bessel fUnction.
propagetion constant, afc
Mech number of wind, V/c
sound p?essure

real

radisl coordinste parallel to ground plane, distance from
source

distance from source at height h +to shadow boundary at
height =z

time

travel time from source at height h +to shadow boundary
at height =

solution to equations (5) or (18) which represents upgoing
wave

particle velocity; function of z, &, and ¥y defined in
equation (22)

wind velocity

defined in equation (13)
rectangulaxr coordinates

acoustic impedance of ground
wave-number componeht in x-direction

wave-number component in y-directlon

impedance ratio, Z/poc
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) polar angle of wave number, tan~1(B/a)
K wave-number component in horizontsal plane, Vd? + 32
p=1o0r2
p density fluctuations
Po density of medium

polar angle
oW enguler frequency

ANATYSTS

Derivation of Wave Equation

In an inviscid medium moving with the veloecity V +the linearized
Navier-Stokes equations for the conservation of mass and momentum become,
in the absence of sources,

%o,y ,,

v Sy + Py Sy 0 (1)
.aﬁ.’.u avail +V.a_li=__l_a_‘p_ (2)
ot > aX5 axl Po axi

provided the wind veloclty is assumed to lie in the xl-direction and to

be a functlion only of X3z. Here P Trepresents the static density of

the medium which 1s assumed constent; the density fluctuations p, the
sound pressure p, and the particle velocity uy; are considered to be

small quantities of the first order. If the further assumption is made
that p = c2p, that 1s, that the pressure and density variations are
adiabatically related, then these equations yield

2 o 2 2 2 2
2=(1-M2)3P+3P+5P-.2cﬁ_9_1’_+2poc

du
M3 (3)

L as 2
o2 dz ox

Q/
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vhere M = V/c and the coordinates Xj have been relsbeled x, Yy,
and z.

It is next assumed that the sound pressure p and the vertical
component of the particle velocity uz vary harmonicelly in time as

e'iRCt and can be Fourier analysed in the x- and y-directions:

N

P = -ikc-tﬂ ei(mx-l-ﬁy)F(m;B;Z)da' as

(o]

> (&)

ug = e-ikctﬂ ei(@“"”)a(u.,s,z)da ag
- y

The Fourier transforms are related by equation (2) which gives

&

= = ipelk - aM)G

5

Substitution of these relations into originael differentisl equation (3)
then shows that F must setisfy

2
d=F 2aM' ar | 2 2 2[ =
—_— === 2L k - aM -5 - F =0
az2 kK -« oM dz ( ) B (5)

together with sppropriate boundary snd source conditions. Here
M' = aM/dz.

It is convenient to rewrite expressions (4) in polar coordinates by
putting

X =1r cos ¢

¥y =T cos ¢
a =K cos 0O

B =K sinB

K dﬁ'dﬂ

3
8
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so that p becomes, with 7 =0 - @,

p =ﬂei"r €8 7 (k,y,2)k ak ay (6)

The boundary condition at the ground surface, z = O, can be speci-
fied by requiring that the ratic of the pressure p +to the normsl com-
ponent of the particle veloeclty uw in this plene be equal to a complex
impedance Z independent of the angle of incidence. A point source of
sound is considered to be located a height h above this plane.

The source conditlon can be derived in the usual way by writing p
as the sum of two functions, namely, p = py + Py, Where p, represents

the solution in an unbounded medium and p; 18 an everywhere-regular
solution to wave equation (3) chosen so that Do + Py satisfy the
boundary conditions. Since one of the requirements on p, 1s that 1t

represent outbgolng radiation at greet heights on the upwind side of the
source, it will be convenlent to label the two independent solutions of
equation (5) as D(z) and U(z), where D(z) represents a downcoming
wave and U(z) an upgolng one for large values of z. One can then
write p, in the form given by equation (6), where the corresponding

F, is given below the source by

Fg = AD(k,7,2) (72)

and above the source by

Fq BU(KJ')':Z) (F{b)

]

55 . )
which corresponds to e K |z hl in a stationary medium. The two
constants A and B  are determined by the conditions at the source,
namely, by requiring that the pressure be continuous across the plane of
the source, z = h, and that the particle velocity (or pressure gradient)
suffer a discontinuity across this plane, which is determined by the
source strength. The first of these conditions yields the relation

AD(h) = BU(h) ' (8)
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The second source condltion may be obtalned by specifying the source
output. To do this reguires that

funds=ll-:c (9)

where w, is the componént of u perpendicular to the surface ele-

ment dS; the integration 1s carried out over a small surface enclosing
the source. Now, from momentum equation (2) there follows

-:Lpoc(k - aM)uJ - pocujM‘Sjl = %

on meking use of equations (4). The three components of the particle
veloclty are then

a2,y ]
u = a ax:L + b ax3
op >
Up = B = (10)
Axp
op
u = g, m————
5 Bx3 ‘
where
el = ip,e(k - aM)
. (11)
-1 Po 2
b~ = F(k - aM)
Thus

funds=fa(w)nds+fb§%5dxadx5
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The last integral is over the two surfaces x; = 0- and x; = OF,
and 1t vanishes since p and its derivatives are continuous slong Xy

However, because of the discontinuity in the vertical component of Vb,
the first integral on the right does not vanish but becomes

U/\a gﬁ; dx; axs

the integration belng teken over the two surfaces X3 = h™ and X3 = nt.
Thus, introducing an expression of the form given by equation (6) for p,
and reverting to polar coordinates r, z glves

2ﬂfaei“r cos 7EBU'(h) - AD'(h]n dc dy r dr

which must be equated to U4n. Here equations (7) have been used to

express F,, and the primes denote differentiation with respect to =z.

From the well-known reletions

n ikr cos
L e 7 ay = Jo(kr)
an J i

fm So(kr)e @k = 8(r) =0 (r £ 0)
O.

S(r)jr dr = 1
[3)

There follows lmmediately
a[Bur(n) - ap*(n)] =1 (12)

vhere a; = a(h).



2A

NACA RM 5T7B25 9

The two equations (8) and (12) determine & and B and, hence,
also the unmbounded solution p,, which becomes above the source (z > n)

-] kL8
po = L f; a [ ay T % 7 & p(nyy(z) (13)
- .

Here
W= 1pgefk - «(n}] (U'D - D'U) (1k)

and 1s independent of z. A similar expression holds below the source
but with z and h interchanged.

The general solution py + Py can now be written

0 AT
o = _J:I f eircr cos 7 ;E;(h) + Fy U(z)r ax dy - (15)
tdo - W

where F, 1s determined by requiring equation (15) to satisfy the normsl
impedance boundary condition = - at z = 0. It turns out to
' grad p ilapg,

be
T
_-KD(0) ~ 1tD'(0) ey ) (16)
kU(0) - :L_C,U‘(O)
where ¢ = B-Z_c. end the primes agein denote differentlastion with respect
o
to =z.

Approximate Solutions Valld Near Ground

Up to now no restrictions have been placed on the Mach number M
beyond requiring that it vary in only one dlrection. In the genersl case
approximate solutions to equation (5) can be readily obtalned by a modi-~
fied W.K.B. method (cf., e.g., the work of Langer, ref. 2). For the
present application it will be sufficient to assume thet both M2 and
M!' are so small that the terms involving these quantities in equation (5)
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can be neglected. It will also be assumed that M dincreases linearly .
with altitude from the value zero at the ground, =z = 0, so that

M= sz (r7)

where s 18 a constant.

With these restrictions equation (5) becomes

2
4°F + (k2 -a? - B2 - 2kasz)F = 0
d22

or

f_i_a?...,. k2 - k2 - 2krez cos(y + ¢)]F =0 (18)
dze

The two restrictions on the range of valldlty of this equation can
be expressed &s

s/k << 1 (19)

end

gz << 1 (20)

The first is & high-~frequency requirement, while the second 1s a restric-
tion to low helights; in practical cases in gtmospheric acoustics neither
restriction seems to be very stringent.

The general solution to equation (18) is of the form
F(K,‘}’,Z) = ul/azl/B(% u3/2) (21)

where
oy _
u= [ke - £2 - 2kksz cos(y + ¢)] I:zekns cos(y + ¢)] : (22)
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and Z, /3 represents a linesr combination of one-third-order Bessel

functions. The quantity € = £l will be specified later. The func-

tion U(z) can be written provisionally in terms of a Hankel function
of the pth kind as

u(z) = ul/ZH:f_l'/l%(% u5/2) (23)

where p =1 or 2 depending on the valve of € and will be specified
later. The function D(z) is then defined similerly in terms of the
other Hankel function.

Transformgtion of Integral 1in Complex Plane

It is of interest to notice that if the function F(k,7,z) = [D(h) +
F]J U(z) in equation (15) did not depend on 7y then the integration over

¥ could be carried out directly and would yleld J’O(nr), which was the
gstarting point in the problem of a sound source in s tempersture gradient
(ref. 3). In that case it proved advantsgeous to divide up the integral
into the sum of two inmtegrals by writing 27, = ESL) + B(1). cuided by

these considerations the % contour in equation (15) is deformed into
the sum of two Hankel functlon contours as shown in figure 2. This is
allowed since the Integrand involves - ¥ only in the form cos ¥y and
cos(y + @), which are unchanged if 7 is incressed by 2x, so that
clearly the contributions from the infinite branches of the contours
cancel each other. As in the case of the integral representation of the
Hankel functions the integrsl converges provided that

- <arg kr < - 7
where 1 1lies between O end n. The solution now has the form

(-}
D= %L d‘yj eltT cos Y%F(E,y,z)dn +
(o}
L .

-3
l'-f 5-7] _e_i_ttr cos 7 & F(E,')',Z)dl‘i (24)
TJe 0 W
2 .
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The convergence ©of these integrals in the complex «k plane is next
examined with a view to deforming the &« integration path into closed
contours, as was done in the temperature problem. In other words, for
the &k integration in the first integral in equation (24), a contour
might be taken encloging the first quadrant in the clockwise directlon,
and, similarly, a contour enclosing the fourth quadrant in the counter-
clockwise direction for the second integral as indicated in figure 3.

To justify this it must be shown that the contributions from the infinite
arcs vanish, that there are no branch points in the first and fourth
quadrants of the xk plane, and that the integrals along the Ilmaginary
exes cancel each other.

The sbsence of branch points follows dlrectly from the fact that the

functions ul/zﬂi?%<% u3/2) are integrsl transcendental functions of u,

that is, they are single vslued and analytic for all finite values of wu.
(They are the solutions to d2F/du2) + uFf = O, which is regular for all
finite values of u.) Also, wu(k) is analytic in the first and fourth

quedrants of the complex k plane, and, hence, e%¥ €08 7 F(k,y,z) is
free of branch points in this region.

The behavior of the integrands on the infinlte arcs is next studied.

First of all it is noticed that the exponential term 8T €8 7 tends to
zero ags Kr tends to infinity in the first quadrant for wvelues of ¥
lying on the contour C;, and similarly this exponentisl tends to zero as

kr tends to infinity in the fourth quadrant for values of ¢y 1lying on
the contour Cp. It must also be shown that F(k,y,z) 50 a8 Kr —ew

when Rek > O (Re indicates real values). In the limit of large values
of k¥, u becomes .

Rzl} + 2 % sz cos(y +¢)]

U = = e

[2ektcs cos(y + $25)J‘?/3

whence

%u3/2 - ('.l:i)e[ k2 nz]

+
3ks cos(y + @)

If the followlng convention 1s sdopted

1/2 1/2
[1:2 - k2 - 2kksz cos(y + ¢)] = i[na - k2 + 2kxsz cos(y + ¢)]
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for k2 > k° - 2kksz cos(y + ¢), then 1t is necessary to choose the minus
sign. This requires that p =1 if €= <1 and p=2 1if e€e=1. It
is then easily found from the asymptotic forms of equation (23) that

~1e2 (u3/2 y, 3/2

1/3

—9-% ilee f% cos(y + ¢ﬂ e~ (z-h)

where u; = u(h). Similarly,

kD(0) - 1¢D'(0) -iex/6 -212
kU(0) - 1tut(0) € =/ exp[%kﬂ cos{y + ¢i}

1/3
U(=)U(n) - 2 i[ee k8 cos(y + ¢)j|“ o-2:2/3ks cos(y+@) _~#(z+h) Snie/12
K

whence
1/3

F(x,7,2) —»f—ﬁ[ae S cos(y + ¢)] [ty goeCenzd)
K

and so has the required behavior.

It can now be proved that the two integrals tesken glong the imsgi-
nary axes cancel each other, that 1s, that

deo ikr co -1 ik
Jf Jf e %% 7 Fk,y)k dr dy-fJf T ©98 7 F(k,y)k ak dy = O

(25)
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for
- <arg kr < =u - 7

where 17 lles between O and xn. To do this kr 1is replaced by
krel™ in the second integral in equation (25) to obtain

e "
J[ Jf e T COB 7 n(k,y)k dx ay
0 2’

with the requirement -n < arg krel® < s =5 or - - x < arg kr < -1.
The integration path Co' (shown by the heavy deshed line in fig. 2)

is now the ssme as C; +tseken in the opposite sense and displaced by =x.

Accordingly ¥ 1is replaced by ¥ + 7, so that this integral -takes the
form

Jeo
-f f gler cos 7 F[—n,('y + :t)]n de ay
(0] C1

with
- <arg kr <z - 7

For equation (25) to hold it is then necessary for

F(x,7) = Fl-x,(y + =)

Reference to equation (22) shows that this condition is fulfilled in the
present case and, hence, that equation (25) is valid.

The generael expression for the pressure field p has now been
reduced to the sum of two contour integrals taken sround the first and
fourth quadrents of the Kk plane. These integrels can be expressed as
a sum of their residues teken st the poles of F(x,7,z) in this plane.
Finally, the integrations over ¢ can be evalusted approximately by a
saddle-point integration through the points of stationary phase of the
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integrands; namely, ¥ =0 for the C; contour and ¥ = x for the
C2 contour.

Firsgt of &ll, on carrying out the approximate integration over 7,
equation (24) becomes

D = JZ[ L i[“r'(“/h] £ p(x,0,2) & +

\/_
(18t quadrant)
J\I.LE e—i[nr-(n:/l(-)] %F(h‘.,x,z) d.I;J (26)

(4th quadrant)

At this point the analysis is restricted to the case of a perfectly
hard ground by letting ¢ —» = in equation (16). The more general case
can be treated by the methods used in the temperature problem (ref. k).
For a hard ground the polegs of F are glven by the roots of U'(O) =
which becomes

5487 -
whence
_23_ uo5/2 _ Aneie:r
where the Aj components are constants, = 0.686, Ap = 3.90,
Az = T.05, « « . , =[a- (3/4)]:1 (where n is large).

Substituting for uy gives

€ix

(2 - “n2)3/2
2ekes cos(y + @)
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or

ixn 2/3
k2 = K2 - EeunskAn cos(y + @) e° ]

As a result of the restriction s/k << 1 (eq. (19)), this equation can
be writen approximately

2/3
ei:t:] / (27)

Ky =~ k l-%—[}e%Aﬂ cos(y + @) e

It is now required that Imx, > O (where Im indicates imaginary
values) for %-< ¢ < %’1 (damped outgoing propagation on upwind side of

source). This leads to the result that € = -1 and p = 1.

Since the values of &, all lie in the first quadrant, the contour

integral enclosing the fourth quadrant must venish; this leaves the
integral enclosing the first quadrant in the xk plane, which can be
evaluated as a sum of residues in the form

p = aﬁzi ‘La—r ot [rmz- /)]y ()| 5 (aD'(Kn’O) (28)
n
n=

S:)U'(nn,o)

7=0
By using the Wronskian relationship D'U - DU' = u;W, which gives

D' = g3W/U at Kk = kp, equation (28) cen bve rewrltten in terms of U
only as follows

' [Breg L[sart (/)] [ aqu(n)u(a)
P =Z - l;I(O)](-B/an)U'(O)] (29)
n=1

where

U= ul/zﬂ1 /5(1)(% ua/a)
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i u = (kz - k2 - 2kkysz cos ¢) (-2krs cos ?5)"2/3 (30)
oy ~ k[ - 5(5 & 2 cos ¢)2/5] (31)

B o5t (e ) = 0
al'l = ipsc(k - ksh cos @)

High-Frequency Behavior of Solution

As 1n the corresponding temperature problem, the high~freguency
behavior of the solution (eqg. (29)) can be studied in the shadow zone by
replacing the functions U by their asymptotic. forms, which are wvalid

for large values of u. It is then found, on reintroducing the time
factor e"i"’t, that

D =ZBnr"1/ 2exp {i Ecnr + %(u}/ 2, ul5/ 2) - cnt]} (32)

n=1

where

On substituting for &, from equation (31) into equation (30)

u = (—-2% cos ¢)l/5kz ¥ (% Ane-iﬂ)2/3

is obtained whlch gives spproximately, for large values of kz,

. 2.5/2 k]:% /2,302 zﬁn(z/c)l/aj
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‘where

o = -28 cos ¢

oo - B{ A con 9503

The terms in the exponent of the asymptotic solution (32) become
then

KpT + %Ex(z):P/E + %El(h)]3/2 -~ at = kT + k[% 01/2(z3/2 + h3/2) +

25n(z/c)1/2 + (h/c)l/z - w‘b]

= k(r - r5)(1 - &) - et - to)

Here, these quantities bhave been identified with ro, the horizontal

distance from source to shadow boundary, and with 5, the corresponding

travel along the limiting ray, which have been derived from ray acoustics
in the appendix.

In terms of these quantities the high-frequency form of the solu-

tion 1is
-iw [t-t -_-(0 1~
P NZ (Constent), E%)l? r—l [ o Sn] (33)
n=1 -

(zh)

Within the shadow zone the solution 1s adequately expressed by the

first mode alone because of the rapid attenuation of the higher modes.
To this approximation the sound pressure is damped at the rate of

8.68ImkBy ~ 6.1(-s cos #)2/ 3%/ 2av/unit aistance (34)

within the shadow (g <g< %, r > ro). This 1s in addition to the

Gamping due to cylindricel divergence, which is expressed by the
factor r-l/z.
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The combined effects of a wind and a temperature gradient can be
accounted for by allowing k to vary with z. In the high~frequency
approximgtion this results in the factor -s cos ¢ in equation (3k)

being replaced by -8 cos ¢ -1 %.z&’ where % is positive for a tem-
c
persture inversion. A shadow will form in this case within that sector

2
for which the factor (—s cos ¢ -1 ic—) / > is real. By replacing s

c d=
by -3—;- %, the result is obtalined that a shadow will form within the

sector defined by
de JaV
l¢1 < (g;/a;)

provided thet ¢ 1s now measured from the 180° line (-x-axis) and

g'i > 0. If %C- > g- then the temperature gradient predominetes over
vA ]

the veloclty gradlent. In this case there will be a shedow 1In g1l
directions if %% < 0 &nd no shadow at all if %§.>-o.

Within the normel or illuminated zone the high-frequency (ray
acoustics) spproximation to the solution can be readily obtained by
integrating equstion (24) around the points of stationsry phase of the
integrand in the k plene (ref. 5).

Messachusetts Instltute of Technology,
Cembridge, Mass., April 6, 1956.
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APPENDIX A
RAY ACOUSTICS IN A WIND GRADIENT

The acoustic-ray paths are determined by Fermat 8 principle, which
requires that they be such that the integral

ds
Al
Jrc + V sin © cos ¢ (A1)

is stationary. Here ds is an increment of path length along ‘the ray,
V is the wind speed, 8 is the angle of inclination of the ray from

the vertical, and ¢ 1s the constent poler angle between the ray and
the wind direction.

From the gecmetry of the problem it is seen that

sin 6 = r!

Jl + (r1)2

vhere r' = g-'f; With this substitution, end writing ds = VL + (r')%4z,

the Buler eguatlon is obtained for which equation (Al) is statlionary in
the form

1+ ()2 ) o

dZ ar \jl + (r')2 + Mr' cos @

or

9 14 (xr')2

o' Jl+ (r')2 + Mr' cos @

where M = V/c and KX 1is a ray parameter. The limiting ray which
defines the shadow boundary can be specified by requiring that r' = «
at the ground, where the wind veloclty is zero. This requirement gives

= 1 for the limiting ray. Carrying out the differentiating in equa-
tion (A2) and solving for r' glves

- x (h2)
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r'=m(l+§%lﬁcos¢+...) (43)

if higher powers of M are ignored. If M 1is set equal to sz it is
found to the first order in M that

=z

z
r =f dz =2
0 -28z cos § y-28 cos ¢

The total horizontal distence between the source at height h and a
point at height 2z on the shadow boundary is then

. h ‘
To = 2(@5 205 @ * {2285 cos ¢) (ak)

The corresponding travel time <ty of the limiting ray between

these two points is gilven by the integral in equation (Al), which becomes,
on substituting for ds aend sin 6 in terms of r?,

%f 14+ (z1)2 az

yL+ (£1)2 + Mr' cos §

Equation (A3) is now used to write r' = 1/y-2M cos @, and M is set
equal to sz. Then, to the seme approximastion as before,

ctg = ro + %(-25 cos ¢)l/2(z5/2 + h5/2) (a5)

is obtained, where r, is given in equation (Ak).
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